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By the finite-element method the problem of nonstationary heat conductivity in the system of three bodies of
finite sizes with an internal moving source of the first kind (burning front) has been solved. The influence of
various factors on the temperature field parameters under HTS pressing of alloys of the Ti–C–Ni system has
been investigated. It has been found that in the synthesis products internal cooling conditions under which the
contact surface temperature behind the burning front remains constant are realized and temperature equaliza-
tion throughout the blank volume occurs. Under internal cooling conditions the material has the highest plas-
ticity and compactability.

One method of obtaining refractory compounds and materials based on them is self-propagating high-tempera-
ture synthesis (HTS), itself representing a kind of burning. To obtain high-density materials, HTS products heated by
the burning wave are subjected to pressing (HTS pressing technology). Unlike the hot pressing of inert powders at
which, due to the external heating, isothermal conditions are provided, under pressing of HTS products their continu-
ous cooling occurs. Therefore, to decrease the heat loss, one should provide heat insulation of synthesis products from
the cold deforming tool. At HTS pressing this problem is solved by carrying out synthesis followed by deformation in
a sand shell. The ability of synthesis products to be plastically deformed and compacted is primarily due to the tem-
perature conditions of deformation. Therefore, the investigations of the thermal regime of the HTS pressing process are
of scientific and practical importance.

The known works devoted to the thermal regime of the HTS process consider the axially symmetric problem
of nonstationary heat exchange with movement of the burning front along the symmetry axis of a cylindrical system
[1]. At HTS pressing a blank having the form of a round or quadratic plate is located in a cylindrical mould perpen-
dicular to the symmetry axis. The burning reaction is initiated from the side surface or from the center of the charge
blank and the burning front moves perpendicular to the symmetry axis. In [2], the thermal regime in the two-dimen-
sional approximation has been investigated for the case of firing from the side surface of the blank. The present paper
aims at mathematical modeling and obtaining of the laws of the formation of the thermal regime in the case of burn-
ing of exothermal mixtures at firing from the blank center. To model the process of heat exchange between the syn-
thesis products and the environment, the finite-element method (FEM) is used.

The thermal regime parameters depend on the position of the point of initiation of the burning reaction deter-
mining the burning path length lb and the burning time tb of the charge blank. The cooling time of already synthesized
volumes increases proportionally to the latter. To provide a high deformation temperature and plasticity of the material,
it is desirable to have minimum values of lb and tb. Therefore, the firing at the center of blanks is optimum. It should
be noted that in the square blank before the moment the burning wave goes to the side surface there is an axially
symmetric and then a three-dimensional heat exchange. In the round plate, throughout the burning and on completion
of the synthesis an axially symmetric heat exchange is realized. Below we consider the HTS pressing of round blanks
and the axially symmetric nonstationary heat-conductivity problem, which is formulated as follows.

A round blank of thickness 2h1 and radius R1 is placed in a sand shell and a steel cylindrical matrix. The
sizes of the shell and the matrix are known. At the initial time, at the blank center a burning reaction with known
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burning temperature Tb and burning velocity ub is initiated. Heat exchange between synthesis products and shell and
shell and tool is realized under boundary conditions of the fourth kind with a perfect thermal contact. At the tool–en-
vironment boundary, boundary conditions of the third kind take place. We are to find the temperature field of the sys-
tem of three contacting bodies at arbitrary time t. The design diagram is given in Fig. 1. In connection with the axial
symmetry a fourth part of the meridional section in cylindrical coordinates r and z are considered. The burning front
is assumed to be flat and moving in the direction of the r-axis.

The mathematical formulation of the axially symmetric heat-exchange problem at the burning stage includes:
1) the system of three differential equations of nonstationary heat conductivity in cylindrical coordinates
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2) the boundary conditions: at the blank–shell and shell–tool boundaries the conditions are of the fourth kind
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 ,   T1 (r, h1, t) = T2 (r, h1, t) ,

λ2 
∂T2 (r, h2, t)

∂z
 = λ3 

∂T3 (r, h2, t)
∂z

 ,   T2 (r, h2, t) = T3 (r, h2, t) ,
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and at the tool–environment boundary (z3 = h1 + h2 + h3) the conditions are of the third kind

λ3 
∂T3 (r, z3, t)

∂n
 + α [T3 (r, z3, t) − Ts] = 0 ; (3)

3) the initial conditions:

T1 (0, z1, 0) = Tb ,   T2 (r, z, 0) = Ts ,   T3 (r, z, 0) = Ts ; (4)

4) the equation of motion of the burning front

rb = ubt ; (5)

5) the temperature of the moving boundary of the first kind (burning front)

T1 (rb, z1, t) = Tb ; (6)

Fig. 1. Scheme of the object of modeling: 1) blank; 2) shell; 3) die.
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6) the adiabatic condition before the burning front

∂T1 (r, z1, t)
∂r



 r=rb+0

 = 0 ; (7)

7) the condition of temperature field symmetry about the z- and r-axes

∂Ti (0, z, t)
∂r

 = 0 ,   
∂Ti (r, 0, t)

∂z
 = 0 .

In calculating the temperature field after the whole volume of the charge is burnt, Eqs. (5)–(7) are eliminated
from the system of equations (1)–(7) and boundary conditions of the fourth kind on the cylindrical surface of the
blank at r = R1
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are added.
The solution of Eqs. (1) with the boundary conditions (2), (3) and the initial conditions (4) is equivalent to

the finding of the variation functional minimum
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The distinguishing feature of functional (8) is the fact that at the burning stage the volume v1 of hot synthesis
products with which heat exchange occurs is the function of time

V1 = πrb
2
h1 = πh1ub

2
t
2
 .

The sought temperature field was found by the FEM. Axially symmetric finite elements (FE) of the triangular
section and the linear approximation of the temperature inside the element were used. When broken down into finite
elements, the entire region is first covered with a rectangular mesh and then the obtained rectangles are divided by di-
agonals into two triangles. In the regions of the boundaries of contact blank–shell heat exchange with high temperature
gradients, crowding of the FE mesh is fulfilled.

The stationary condition of functional (8) leads to the following discrete differential equation in matrix form:

[C] 
∂ 
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 T



  = 
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  . (9)

The matrix differential equation (9) was solved by the finite-difference method according to the implicit-difference
scheme

([C] + ∆t⋅[Λ])⋅


Tk




 = [C]⋅



Tk−1




 + ∆t⋅


 F





(10)

The matrix elements [C], [Λ], and 

 F



  are determined by the known dependences for the axially symmetric

elements of the triangular section [3].
The technological time of temperature field formation t consists of the burning time tb and the pressing delay

time td: t = tb + td. The value of the delay time td is made up of the operating time of the press (C0.5 sec) and the
time given by the researcher. Burning front motion was initiated by increasing stepwise the number of finite elements
of the blank participating in the heat exchange. For the rectangular finite-element mesh the whole area represents a set
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of vertical columns and horizontal layers. In the approximation of the flat burning front, the synthesized material vol-
ume increases, in one step, by the volume of the elements of one column of the blank. In the first step, only the ele-
ments of the first column of the blank of width ∆r1 participate in the heat exchange. In the second step, the burning
front is displaced by the width of the elements of the second column of the blank ∆r2; in the third step — by the
width of the elements of the third column of the blank ∆r3, and so on. In the nth step, the burning time tbn of the
new column of the blank of width ∆rn is

tbn = 
∆rn

ub
 . (11)

During this time a cooling of the blank also occurs. To determine the optimum steps by the time axis, we compared
the solution of the one-dimensional equation (10) with the exact analytical solution of the one-dimensional problem on
the cooling of an infinite layer of substance in an unbounded medium under boundary conditions of the fourth kind
[4]. In analyzing the solutions, it has been found that the value of the time step tbn calculated by (11) and the com-
ponent for the real values of ∆rn and ub of D0.5–1 sec are a rather course discretization of the time axis. Therefore,
the time tbn was broken up into m intervals and Eq. (10) was solved with a step ∆tn = tbn

 ⁄ m. It has been found that
at m = 5 the numerical solution differs from the analytical one by no more than 1%.

At each nth step of burning, the unknown is the initial contact temperature Tcont0 of the newly formed blank–
shell contact surface. Therefore, we first calculated, by equations (10) at ∆t = 10−6 sec, the temperature Tcont0 of the
new contact node and then solved Eqs. (10) with a step ∆tn and determined the temperature fields at a current instant
of time. To solve the system of linear equations (10), we used the Seidel iterative procedure with an accuracy of tem-
perature calculation of 0.5oC.

The laws of the temperature field formation were investigated under HTS pressing of the Ti–C–20% (mass)
Ni system. Burning of this system is due to the highly exothermal reaction of titanium carbide formation: Ti + C =
TiC; inert nickel serves as a binder. The thermophysical properties of the HTS products, sand, and steel die are given
in Table 1. The data on the burning temperature tb were taken from [5] and the value of the burning velocity ub was
determined experimentally. The burning temperature Tb for all compositions exceeds the eutectic temperature of the
TiC–Ni system of 1280oC, and the synthesis products consist of solid particles of titanium carbide and carbide-nickel
melt. The thermophysical properties of the solid-liquid material were calculated by the dependences of [7] and, in ac-
cordance with the phase diagram, the quantity of the liquid and solid phases, the melt composition, and the material
porosity equal to 50% were taken into account. The heat-transfer coefficient was taken as α = 44 W/(m2⋅K).

In the first stage, we investigated the thermal conditions for the synthesis of the type nomenclature of blanks
and standard technological parameters of the process. We considered the synthesis of a round blank with a radius
R1 = 40 mm and thickness hbl = 2h1 = 14 mm in a matrix with rm = 55 mm and Rm = 62.5 mm. The sand shell thick-
ness was hsh = h2 = 10 mm; the thickness of the tool was ht = h3 − h2 = 15 mm; the delay time of pressing was
td = 0.5 sec. Figure 2 shows the temperature distribution over the blank radius in the case of synthesizing the TiC–20%
Ni melt. Characteristic of the temperature field is the inhomogeneous temperature distribution in the bulk of the blank.
This holds true for both the temperature of the contact surface of the blank Tcont and the temperature of its central
part Tcent. The temperature field inhomogeneity is due to two factors. First, the blank has three contact heat-exchange
boundaries that are heat sinks: two planes of support and a side cylindrical surface. In the vicinity of these boundaries
the "coldest" zones with a high temperature gradient are formed. Second, when the blank is heated by a moving burn-
ing front the cooling time tcool of individual zones depends on their position relative to the firing point:

TABLE 1. Thermophysical Properties of Materials

Material λ, W/(m⋅K) c, J/(kg⋅K) ρ, kg ⁄ m3 Tb, oC ub, mm/sec

TiC−20% Ni 12.1 967.5 2700 2400 15

Sand [6] 0.326 795.0 1500 – –

Steel tool [6] 32.0 561.0 7800 – –
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tcool = 
R1 − r

ub
 + tbl ,   0 ≤ r ≤ R1 . (12)

According to (12), as the firing point moves away (r = 0) and the r-coordinate increases, the cooling time decreases
and the blank temperature increases.

On completion of the synthesis, in the blank two characteristic zones connected with the corresponding con-
tact heat-exchange boundary are formed. In the central part of the blank, zone I is situated. This zone is characterized
by a weak dependence of the contact temperature Tcont on the cooling time and the r-coordinate, throughout the zone
Tcont D const. As the cylindrical surface of the blank is approached (r → R1), zone II, in which the temperatures Tcont
and Tcent sharply decrease, is formed.

Figure 3 shows the temperature distribution with blank height (z-coordinate) at the center of the blank (r = 0,
tcool = 3.2 sec) and at the boundary of zones I and II (r = 35 mm, tcool = 0.9 sec). The small cooling time (curve 2) is
characterized by a sharp difference in temperature between the central and contact volumes. With increasing cooling
time at a practically constant temperature Tcont (for z = 7 mm) temperature equalizing in the blank thickness due to the
cooling of the central volumes occurs, and in zone I the regime of internal cooling is thereby realized [4].
The results of the numerical solution were compared with the results of the analytical solution of the one-dimensional
problem on the cooling of an infinite layer placed in an unbounded medium [4]. The cooling time of the infinite layer
was taken to be equal to the cooling time of the section with a variable r-coordinate and was calculated by depend-
ence (12). In the cooling of the infinite layer, contact heat exchange occurs only in one direction — along the z-co-
ordinate. The stationary value of the temperature Tcont for the infinite layer corresponds to the temperature Tcont0 that
instantaneously settles at the boundary of the infinite layer cooled in the unbounded medium [4]:

Tcont0 = Ts + (Tb − Ts) 
Kε1

Kε1 + Kε2
 . (13)

The results of the analytical solution and of the solution by the FEM (Fig. 2) are practically identical (the difference
does not exceed 1%), and in the first approximation, to evaluate the temperature field in zone I with the regime of
internal cooling, we can use the analytical solution of the one-dimensional problem.

Consider the influence of various factors on the thermal regime of HTS pressing of synthesis products of the
Ti-C–20% Ni system.

The thickness of the shell between the blank and the tool is of paramount importance for the thermal regime.
The sand shell and the tool in the aggregate represent a two-layer medium. The effective thermophysical properties of
such a medium are determined by the sizes and individual properties of the components of the bodies. With decreasing

Fig. 2. Changes in the temperatures of the contact surface Tcont (1′, 2′) and the
center Tcent (1, 2) along the blank radius: 1, 1′) solution of the two-dimen-
sional problem by the FEM; 2, 2′) analytical solution of the one-dimensional
problem. T, oC; r, mm.

Fig. 3. Temperature distribution with blank height: 1) r = 0 mm (tcool = 3.2
sec); 2) r = 35 mm (tcool = 0.8 sec). T, oC; z, mm.
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thickness of the sand shell the effective coefficient of thermal activity Kε2 increases and, according to (13), the initial
temperature Tcont0 and, therefore, the current temperature of the contact surface Tcont decrease. The results of the nu-
merical experiment confirm this rule: as the shell thickness is decreased from hsh = 10 mm to hsh = 1.5 mm, the con-
tact surface temperature Tcont monotonically decreases (Fig. 4). The temperature of the central part of the blank Tcent
practically remains unchanged. As a result, the inhomogeneity of the temperature distribution with thickness of the
blank increases and its mean temperature decreases.

The influence of the blank thickness hbl = 2h1 on the laws of change in temperatures Tcont and Tcent is given
in Fig. 5. Variation in hbl at a constant thickness of the shell hsh produces no effect on the values of the thermal ac-
tivity coefficients Kε1 and Kε2 and the initial contact temperature Tcont0. Accordingly, there is a weak dependence of
the contact surface temperature Tcont on the blank thickness. The temperature at the blank center changes in the oppo-
site manner. A decrease in the blank thickness and mass leads to a faster cooling of the central volumes of the blank
and a decrease in its mean temperature. The regime of internal cooling at which Tcont = const remains when hbl de-
creases to 8 mm. Cooling of thin blanks with hbl < 8 mm occurs at a high rate and the regime of internal cooling is
not observed.

An important technological parameter is the pressing delay time td. As it increases, the cooling of the blank
is accompanied by a decrease in the temperature gradients (Fig. 6). At small values of the delay time (td ≤ 2 sec) the
temperature Tcont changes slightly and the regime of internal cooling at which the internal volumes of the blank mark-

Fig. 4. Influence of the shell thickness hsh on the distribution of temperatures
Tcent (1, 2, 3) and Tcont (1′, 2′, 3′) over the blank radius at hbl = 14 mm and
td = 0.5 sec: 1 and 1′) hbl = 10 mm; 2 and 2′) hbl = 5 mm; 3 and 3′) hbl = 1.5
mm. T, oC; r, mm.

Fig. 5. Influence of the blank thickness hbl on the distribution of temperatures
Tcent (1, 2, 3, 4) and Tcont (1′, 2′, 3′, 4′) over the blank radius at hsh = 10 mm
and td = 0.5 sec: 1 and 1′) hbl = 20 mm; 2 and 2′) hbl = 14 mm; 3 and 3′)
hbl = 10 mm; 4 and 4′) hbl = 6 mm. T, oC; r, mm.

Fig. 6. Influence of the pressing delay time td on the distribution of tempera-
tures Tcent (1, 2, 3, 4) and Tcont (1′, 2′, 3′, 4′) over the blank radius at
hbl = 14 mm and hsh = 10 mm: 1 and 1′) td = 0.5 sec; 2 and 2′) td = 2 sec; 3
and 3′) td = 4 sec; 4 and 4′) td = 6 sec. T, oC; r, mm.
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edly cool down with temperature Tcent is realized. The boundary of zones I and II, which was the hottest at the mo-
ment of complete burning of the blank, cools down most rapidly. As td increases due to the heat conductivity, the
temperature Tcent becomes equal along the layer length and at td ≥ 6 this high-temperature region disappears.

The ability of an inhomogeneously heated body for plastic deformation is determined by the temperature of
the coldest zones. For HTS pressing this is the contact surface temperature Tcont. The maximum level of temperature
Tcont throughout the blank surface corresponds to the regime of internal cooling. This state gives the top estimate of
the deformation temperature of synthesis products. An increase in the dimensions of the sand shell leads to an increase
in the absolute level of temperature Tcont and, in terms of plasticity and compactibility, produces a positive effect on
the temperature regime of deformation. At the same time, with increasing hsh the tool–shell contact rigidity decreases,
which, together, with the temperature field inhomogeneity and the rheological properties, leads to a shape distortion
and a low dimensional accuracy of the blank. Therefore, the question of optimum dimensions of the heat-insulating
shell should be resolved by simultaneously investigating the thermal regime and the process of deformation of synthe-
sis products in shells of various dimensions.

Thus, the finite-element model of heat exchange has made it possible to reveal the main laws of thermal re-
gime formation under axially symmetric burning and cooling of round blanks of finite sizes in a heat-insulating sand
shell. Characteristic of the temperature field in the synthesis products is a substantial inhomogeneity caused by the
presence of contact heat-exchange boundaries and the nonisochronism of heating and cooling of the blank. Under non-
stationary heat exchange in the blank–shell–tool system, the regime of internal cooling, at which the contact surface
temperature behind the burning front remains constant and the temperature becomes equal throughout the bulk of the
blank, is possible. The sizes of the region with the regime of internal cooling depend on the thermokinetic parameters
of the HTS mixtures and the dimensions of the blank being synthesized and of the heat-insulating shell. In the regime
of internal cooling, the material has the highest plasticity and compactibility. Accordingly, the optimum technological
parameters of the process can be determined from the condition of the maximum volume of the blank with the regime
of internal cooling.

NOTATION

Ti, temperature of bodies; ci, ρi, and λi, specific heat, specific density, and heat conductivity coefficient of
system bodies; hi, characteristic sizes of system bodies; Vi, volume of system bodies (i = 1, 2, 3); t, time; r and z, cy-
lindrical coordinates; α, heat-transfer coefficient; Ts, medium temperature; S, area of the tool with convective heat ex-
change; Tb, burning temperature; ub, burning velocity; [C], heat matrix; [Λ], conduction matrix; 


 F



 , heat load vector;




Tk−1




 and 



Tk




, matrices of nodal temperature values at the beginning and end of the time interval ∆t; rb, burning

front radius, hbl, hsh, and ht, thickness of the blank, shell, and tool; R1, blank radius; rm and Rm, inner and outer
radii of the matrix; tb, burning time; td, delay time of pressing; tcool, cooling time; Tcont, contact temperature; Tcont0,
initial contact temperature; Tcent, temperature at the blank center; Kε1 = √ λ1c1 ρ1  and Kε2 = √ λ2c2 ρ2 , criteria of ther-
mal activity of the blank and shell. Subscripts: sh, shell; b, burning; bl, blank; cont, contact; cent, center; s, medium;
m, matrix; d, delay; t, tool; cool, cooling.
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